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a b s t r a c t

In this paper we perform an analysis of the wave structure of the ideal magnetohydrody-
namic (MHD) equations. We present an analytical expression of the nonlinearity term
associated to each characteristic field derived from a scaled version of the complete system
of eigenvectors proposed by Brio and Wu [M. Brio, C.C. Wu, An upwind differencing scheme
for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (2) (1988) 400–422]
and adopting the eight wave approach by Powell et al. [K.G. Powell, P.L. Roe, R.S. Myong, T.
Gombosi, D. deZeeuw, An upwind scheme for magnetohydrodynamics, AIAA 12th Compu-
tational Fluid Dynamics Conference, San Diego, CA, 1995, pp. 661–674]. A criterion for the
detection of local regions containing points for which a nonlinear characteristic field
becomes nonconvex is formulated for the two-dimensional case. We then design a charac-
teristic-based upwind scheme for the ideal MHD equations that resolves the wave dynam-
ics by local characteristic wavefields. The new scheme is able to detect local regions
containing nonconvex singularities and to handle an entropy correction through a pre-
scription of a local viscosity ensuring convergence to the entropy solution. A third order
accurate version of the scheme performs satisfactorily in resolving one and two-dimen-
sional MHD problems. Numerical results indicate that the proposed scheme behaves low
dissipative, stable and accurate under high CFL numbers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The ideal magnetohydrodynamics (MHD) system of equations can be expressed as
qt ¼ �rðqvÞ; ð1Þ

ðqvÞt ¼ �r qvvT þ P þ 1
2

B2
� �

I � BBT
� �

; ð2Þ

Bt ¼ r� ðv � BÞ; ð3Þ

Et ¼ �r
c

c� 1
P þ 1

2
qq2

� �
v � ðv � BÞ � B

� �
; ð4Þ
where q; P;v;B and E denote the mass density, the pressure, the velocity field, the magnetic field and the total energy respec-
tively. The adiabatic constant is represented by c and the energy E ¼ 1

2 qq2 þ 1
2 B2 þ P

c�1 where q2 and B2 are the squares of the
magnitudes of the velocity field and the magnetic field respectively. The hydrodynamic pressure is defined through the ideal
gas EOS as P ¼ ðc� 1Þq� where � is the specific internal energy.
. All rights reserved.
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The ideal MHD wave dynamics is more complicated than the one for ideal gases. There exist hyperbolic singularities
where the MHD eigensystem is not well behaved and the presence of the magnetic field generates new magnetic and magne-
toacoustic waves. The rotation of the magnetic field induces non-strict hyperbolicity of the MHD system and non-genuinely
nonlinearity in some of the local wavefields [4,5].

Analytical studies and numerical simulations play an important role in investigating the motion of ionized gases de-
scribed by the ideal MHD equations. From the analytical perspective the standard approach is based on the study of the wave
structure arising from the equations ([14,4,5,28]) and from the numerical one the strategy consists in the development of
numerical schemes able to reproduce and explore the physical properties of the MHD flow ([5,15,27]).

In this research work we analyze the nonconvex wave structure of the ideal MHD system of equations and propose a
numerical scheme for its approximation.

Our approach follows the recent theory of MHD shock waves based on dissipative MHD ([27]) that maintains three rel-
evant features namely: the existence of intermediate shocks, the involvement of time-dependent intermediate shocks in the
rotation of the magnetic field and the dependence of the complex wave structure on the shock dissipation mechanism.

Well behaved numerical schemes converge to the entropy solution of the system of equations ([13]). Numerical schemes
for the approximation of the solution of ideal MHD equations require dissipation to be well behaved and develop the com-
plex wave structure that appears in the dynamics as a consequence of the nonlinear wave interaction. Most numerical Godu-
nov-type schemes for ideal MHD equations are designed to prescribe a global dissipation ([1,2,15,18]). The viscosity
prescription ensures stability and computational efficiency but on the other hand the excessive dissipation implies loss of
accuracy and smearing of fine structure. Different ways to overcome the excess of dissipation include the use of very fine
grids or the implementation of very high order versions of the scheme.

The Godunov upwind scheme allows to achieve precise control of the numerical dissipation ([11,22]). This scheme de-
fines, from the local characteristic structure, an upwind choice at cell interfaces as the result of the solution of the Riemann
problem. Upwind schemes are defined according to the sign of the local wave velocities, propagate waves with correct speed
and are featured by their low local dissipative behavior ([9,11,21,22]). However, because of the lack of dissipation, upwind
schemes may fail to converge to the entropy solution around points of acoustic causality i.e., points where new wave struc-
ture may be generated as a result of the nonlinear wave interaction [6]. In those cases it is required to apply an entropy cor-
rection to the scheme. This consists of determining the necessary viscosity to ensure correct formation of new waves
([8,9,13,21,25,29]).

In convex dynamics the points of acoustic causality are sonic points which are responsible for the formation of transonic
rarefaction waves. Some numerical dissipation is required to guarantee correct formation of these waves avoiding the so-
called ‘‘dog-leg” non-physical effect. In ideal MHD wave dynamics the points of acoustic causality are not only sonic points
but the points where nonconvexity occurs too. Then, an additional entropy correction in the neighborhood of points where
nonlinear characteristic fields are nonconvex is necessary to ensure correct formation of the peculiar complex wave struc-
ture of MHD equations as the so-called compound waves.

In this paper we study the nonconvex behavior of MHD equations through an analysis of the wave structure. From a
scaled version of the Brio and Wu complete system of eigenvectors ([4,5]) and adopting the eight wave approach proposed
by Powell et al. in [21] (see also [15]) we derive an analytical expression of the nonlinearity term associated to each nonlin-
ear characteristic field. We obtain an explicit criterion to determine local regions of the solution for which a specific nonlin-
ear wavefield becomes nonconvex. We then formulate an entropy-fix upwind scheme that uses the complete eigensystem of
the MHD equations for the evaluation of the numerical fluxes and propose an entropy correction consisting of prescribing an
analytical viscosity around points of acoustic causality (sonic and nonconvex points). The amount of viscosity is determined
according to the analysis of the wave structure carried out and is applied locally in space and differently in each wavefield.

A third order version of the scheme is able to approximate the numerical solution of one and two-dimensional MHD
Riemann problems, the evolution of the two-dimensional Orszag–Tang turbulence model ([7,19,20]) and the interaction be-
tween a strong shock and a high-density cloud ([8,2]). Numerical results indicate that the third order accurate entropy-fix
upwind scheme behaves accurate, low dissipative and stable under high CFL numbers.

This paper is organized as follows. In Section 2 we analyze the wave structure of the ideal MHD equations and derive an
analytical expression of the nonlinearity term for each characteristic field. In Section 3 we propose a nonconvex entropy-fix
upwind scheme for scalar conservation laws and extend it for the equations of ideal MHD in Section 4. In Section 5 we ex-
plain the procedure to implement high order versions of our scheme and in Section 6 we present a set of numerical results. In
Section 7 we draw our conclusions.

2. Ideal MHD equations: a nonconvex system of conservation laws

In this section we exhibit a scaled version of the complete system of eigenvectors proposed by Brio and Wu ([4,5]) adopt-
ing the eight wave approach presented by Powell et al. ([21]). The scaling guaranties continuity of the eigenvectors with re-
spect to the conserved variables in the neighborhood of singular points. In addition, our unified way to express the nonlinear
eigenvectors allows to derive an analytical expression of the nonlinearity term for the nonlinear characteristic fields. From
this expression we discuss the nonconvexity of the ideal MHD equations for the two-dimensional case similarly as Brio and
Wu stated in [4,5] for the one-dimensional case.
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Let us consider a two-dimensional system of conservation laws of the form
ut þ fðuÞx þ gðuÞy ¼ 0; ð5Þ
where u ¼ ðu1; . . . ;umÞ is the vector of conserved variables and fðuÞ ¼ ðf1ðuÞ; . . . ; fmðuÞÞ and gðuÞ ¼ ðg1ðuÞ; . . . ; gmðuÞÞ are the
fluxes. The system is hyperbolic if the Jacobians of the fluxes are diagonalizable matrices with real eigenvalues and a com-
plete set of eigenvectors in each neighborhood of the solution ([17]). The diagonalization of the Jacobians decouples the ori-
ginal hyperbolic system in m scalar conservation laws defining the so-called characteristic fields and their corresponding
characteristic fluxes ([16]).

Let kf
1ðuÞ; . . . ; kf

mðuÞ be the eigenvalues of the Jacobian f 0ðuÞ counting each one as many times as its multiplicity and
Rf ¼ frf

1ðuÞ; . . . ; rf
mðuÞg and Lf ¼ flf

1ðuÞ; . . . ; lf
mðuÞg a complete system of right and left eigenvectors diagonalizing f 0ðuÞ such

that rf
i � l

f
j ¼ dij and
Lf ðuÞf 0ðuÞRf ðuÞ ¼ K ¼ diagðkf
1ðuÞ; . . . ; kf

mðuÞÞ: ð6Þ
The eigenvalues of the Jacobian represent the characteristic speeds of the characteristic fluxes analogous to the first
derivative of the flux of a scalar conservation law. The nonlinearity of the corresponding characteristic fields is deter-
mined by the scalar quantity rkkðuÞ � rkðuÞ that represents the second derivative of the scalar flux in a scalar conservation
law [16].

A characteristic field ‘‘k” is said to be linearly degenerate if
rkkðuÞ � rkðuÞ � 0 ð7Þ
and genuinely nonlinear or convex ([16]) if
rkkðuÞ � rkðuÞ– 0 8u: ð8Þ
Nonlinear characteristic fields that change acoustic phase in isolated points u0 whererkðu0Þ � rðu0Þ vanishes are called non-
convex ([12]).

Following the above formalism let us study the spectral structure of the ideal MHD equations.
The two-dimensional ideal MHD Eqs. (1)–(4) are a system of the form (5) where the conserved variables are

u ¼ ðq;qv;B; EÞT being q the density, v ¼ ðu;v ;wÞ the velocity field, B ¼ ðBx;By;BzÞ the magnetic field and E the total energy.
The fluxes in each direction are defined as
f ðuÞ ¼

qu
qu2 þ P� � B2

x

quv � BxBy

quw� BxBz

0
uBy � vBx

uBz �wBx

uðEþ P�Þ � Bxðv � BÞ

2
66666666666664

3
77777777777775
; gðuÞ ¼

qv
quv � BxBy

qv2 þ P� � B2
y

quw� BzBy

vBx � uBy

0
vBz �wBy

vðEþ P�Þ � Byðv � BÞ

2
666666666666664

3
777777777777775

;

where P� ¼ P þ 1
2 B2 is the total pressure and P the hydrodynamic pressure defined through the ideal gas EOS as P ¼ ðc� 1Þq�

with � the specific internal energy.
In addition to this system of equations the magnetic field satisfies the divergence-free constraint
r � B ¼ 0: ð9Þ
To classify the characteristic fields of this MHD system we first present a spectral decomposition of the Jacobians such that
the eigenvectors are smooth functions of the conserved variables. We show a complete system of eigenvectors of the Jaco-
bian of f (x direction). The corresponding decomposition for the Jacobian of g (y direction) is similar.

We start from the normalization proposed in [5] carrying out the necessary modifications to satisfy the continuity
condition.

Let us define ðbx; by; bzÞ ¼ ðBx;By;BzÞ=
ffiffiffiffiqp and b2 ¼ b2

x þ b2
y þ b2

z . The acoustic sound speed is defined as
a ¼

ffiffiffiffiffiffi
cP
q

s
:

The Alfven velocity ca ¼ jbxj and the fast and slow velocities are given by
cf ;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ða2 þ b2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ2 � 4a2b2

x

q� �s
:

There are eight characteristic fields which characteristic velocities are: k1ðuÞ ¼ u� cf ; k2ðuÞ ¼ u� ca; k3ðuÞ ¼
u� cs; k4ðuÞ ¼ u; k5ðuÞ ¼ u; k6ðuÞ ¼ uþ cs; k7ðuÞ ¼ uþ ca; k8ðuÞ ¼ uþ cf .
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We define sgnðtÞ ¼ 1 for t P 0 and sgnðtÞ ¼ �1 otherwise and set by and bz values from the expressions
by ¼
Byffiffiffiffiffiffiffiffiffiffi
B2

yþB2
z

p ; B2
y þ B2

z – 0;

sgnðByÞ 1ffiffi
2
p ; otherwise;

8<
: bz ¼

Bzffiffiffiffiffiffiffiffiffiffi
B2

yþB2
z

p ; B2
y þ B2

z – 0;

sgnðBzÞ 1ffiffi
2
p ; otherwise:

8<
:

The eigenvectors associated to k4; k5; k2 and k7, are
r4 ¼ ð1;u;v ;w;0; 0;0;
1
2

q2ÞT ;

r5 ¼ ð0;0;0;0;1; 0;0; BxÞT ;

l4 ¼
c� 1

a2 1� 1
2

q2; u;v ;w;Bx; By; Bz;�1
� �

;

l5 ¼ ð0;0;0; 0;1;0; 0;0ÞT ;

r2 ¼ 0;0;�bzsgnðBxÞ; bysgnðBxÞ; 0;�
bzffiffiffiffiqp ;

byffiffiffiffiqp ;�sgnðBxÞ½bzv � byw�
� �T

;

r7 ¼ 0;0;�bzsgnðBxÞ; bysgnðBxÞ; 0;
bzffiffiffiffiqp ;�

byffiffiffiffiqp ;�sgnðBxÞ½bzv � byw�
� �T

;

l2 ¼
1
2

sgnðBxÞ½bzv � byw�; 0;� bz

2
sgnðBxÞ;

by

2
sgnðBxÞ; 0;�bz

ffiffiffiffiqp
2
;by

ffiffiffiffiqp
2
;0

� �
;

l7 ¼
1
2

sgnðBxÞ½bzv � byw�; 0;� bz

2
sgnðBxÞ;

by

2
sgnðBxÞ; 0;bz

ffiffiffiffiqp
2
;�by

ffiffiffiffiqp
2
;0

� �
:

The eigenvectors associated to k1; k3; k6 and k8; can be expressed in an unified way for k ¼ 1;3;6;8 as
rk¼ a;aðuþcÞ;av� �a�csgnðc2�a2ÞsgnðBxÞby;aw� �a�c;sgnðc2�a2ÞsgnðBxÞbz;0; �a
affiffiffiffiqp sgnðc2�a2Þby; �a

affiffiffiffiqp sgnðc2�a2Þbz;

�

a
q2

2
þc2þuc�c�2

c�1
a2

� �
�sgnðc2�a2Þ�a�csgnðBxÞðvbyþwbzÞ

�
; ð10Þ

lk ¼
1

2a2 ðc� 1Þaq2

2
� auc þ �a�c sgnðc2 � a2ÞsgnðBxÞðvby þwbzÞ; ð1� cÞauþ ac;

�
ð1� cÞav � �a�c sgnðc2 � a2ÞsgnðBxÞby; ð1� cÞaw� �a�c sgnðc2 � a2ÞsgnðBxÞbz;�ð1� cÞaBx;

ð1� cÞaBy þ
ffiffiffiffi
q
p

a�asgnðc2 � a2Þby; ð1� cÞaBz þ
ffiffiffiffi
q
p

a�asgnðc2 � a2Þbz; ðc� 1Þa
�
; ð11Þ
where c and �c and a and �a are determined as:

	 for k ¼ 1 and k ¼ 8; c ¼ 
cf ; �c ¼ 
cs and
a ¼ af � sgnðByÞ; a2 < b2
x ;

af ; otherwise;

(
�a ¼ as � sgnðByÞ; a2 < b2

x ;

as; otherwise;

(

	 for k ¼ 3 and k ¼ 6; c ¼ 
cs;�c ¼ 
cf and
a ¼ as � sgnðByÞ; a2 > b2
x ;

as; otherwise;

(
�a ¼ af � sgnðByÞ; a2 > b2

x ;

af ; otherwise;

(

af and as are defined from the following expressions:
af ¼

ffiffiffiffiffiffiffiffiffi
a2�c2

s
c2

f
�c2

s

r
; B2

y þ B2
z – 0 or B2

x –cP;

1ffiffi
2
p ; otherwise;

8><
>:

as ¼

ffiffiffiffiffiffiffiffiffi
c2

f
�a2

c2
f
�c2

s

r
; B2

y þ B2
z – 0 or B2

x –cP;

1ffiffi
2
p ; otherwise:

8><
>:
The system of eigenvectors for the Jacobian of g can be obtained by interchanging Bx by By;u by v, the second component by
the third and the fifth by the sixth.

From the above spectral decomposition we shall study the wave structure of the MHD equations and analyze the convex-
ity of the nonlinear fields in terms of the magnitude of the magnetic field.
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The characteristic fields 2, 7 called Alfven waves, and 4, 5 called entropy waves or contacts are linearly degenerate since
rk2ðuÞ � r2ðuÞ � 0; ð12Þ
rk7ðuÞ � r7ðuÞ � 0; ð13Þ
rk4ðuÞ � r4ðuÞ � 0; ð14Þ
rk5ðuÞ � r5ðuÞ � 0: ð15Þ
The other fields are characterized and classified from the following statements.

Proposition 1. If kðuÞ is an eigenvalue corresponding to a fast or slow characteristic field (1, 8 and 3, 6, respectively) and r(u) is
the associated right eigenvector, then the following analytic expression is satisfied:
rkðuÞ � rðuÞ ¼ ac
2q
ð1þ 2�a2 þ ca2Þ: ð16Þ
Proof. It follows from a nontrivial lengthy calculation from the proposed general expression of r(u) in terms of a; �a and c. h

Corollary 1. Expression (16) does not vanish identically for fast and slow characteristic fields. Therefore, these characteristic fields
are nonlinear.

The following theorem describes the conditions under which a nonlinear characteristic field (fast or slow) is nonconvex in
terms of the change of sign of the components of the magnetic field.

Theorem 1. Let us assume Bz ¼ 0

(1) If a2 < b2
x , then:
(a) The slow wavefields are genuinely nonlinear
(b) The fast wavefields are non-genuinely nonlinear (nonconvex) and for each fast eigenvalue kðuÞ and its associated

eigenvector rðuÞ, the scalar quantity rkðuÞ � rðuÞ vanishes if and only if By ¼ 0, and changes sign with By.
(2) If a2 > b2
x , then:
(a) The fast wavefields are genuinely nonlinear.
(b) The slow wavefields are non-genuinely nonlinear (nonconvex) and for each slow eigenvalue kðuÞ and its associated

eigenvector r(u) the scalar quantity rkðuÞ � rðuÞ vanishes if and only if either By ¼ 0 or Bx ¼ 0, and rkðuÞ � rðuÞ
changes sign with By.
Proof. (1-a) If kðuÞ is a slow eigenvalue and r(u) its associated eigenvector then the expression (16) becomes
rkðuÞ � rðuÞ ¼ �ascs

2q
1þ 2�a2

f þ ca2
s

� 	
ð17Þ
because a ¼ as; �a ¼ af and c ¼ �cs in this case.
From a2

6 b2
x 6 c2

f it follows that as > 0 and cs > 0 since a2b2
x > 0. Thus rkðuÞ � rðuÞ – 0 for all u.

(1-b) If kðuÞ is a fast eigenvalue then a ¼ sgnðByÞaf and c ¼ �cf . Since a2
f a

2
s ¼

a2b2
y

c2
f
�c2

s
and c2

s 6 a2 < b2
x 6 c2

f we have that
a2
f ¼

a2b2
y

c2
f � a2

: ð18Þ
Thus, from expression (16) in Proposition 1, rkðuÞ � rðuÞ ¼ 0 if and only if By ¼ 0.
(2-a) If kðuÞ is a fast eigenvalue and r(u) its associated eigenvector then (16) becomes
rkðuÞ � rðuÞ ¼ �af cf

2q
1þ 2�a2

s þ ca2
f

� 	
ð19Þ
because a ¼ af ; �a ¼ as and c ¼ �cf in this case.
From a2 > b2

x P c2
s we have that af > 0. On the other hand cf is always different from zero and 1þ 2a2

s þ ca2
f P 1.

Therefore rkðuÞ � rðuÞ – 0 for all u.
(2-b) If kðuÞ is a slow eigenvalue then a ¼ sgnðByÞas and c ¼ �cs. Since c2

s 6 b2
x < a2

6 c2
f we have that
a2
s ¼

a2b2
y

a2 � c2
s
: ð20Þ
Thus, from expression (16) in Proposition 1,rkðuÞ � rðuÞ ¼ 0 if and only if either By ¼ 0 or cs ¼ 0. Since cf > 0 and cscf ¼ a2b2
x

then cs ¼ 0 if and only if Bx ¼ 0.
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Remark 1. Theorem 1 follows for y-direction interchanging By by Bx.

Remark 2. When By changes sign either the fast or the slow characteristic fields in the x-direction are nonconvex and con-
sequently the slow characteristic fields in the y-direction become nonconvex. The same apply in the y-direction when Bx

changes sign.

Remark 3. The analysis concludes that the characteristic velocities of the fast fields (for a2 < b2
x ) and the slow fields (for

a2 > b2
x ) are non-monotone functions of By.

Remark 4. Proposition 1 extends to the two-dimensional case the discussion of nonconvexity performed by Brio and Wu in
[4,5]. The calculation of rkðuÞ in general expression (16) accounts for possible vanishing of the nonlinearity term when
Bx ¼ 0 (in the x-direction). In particular, the case considered in expression (17) shows that the slow nonlinear characteristic
field in the x-direction might become nonconvex not only when By (transversal magnetic field) vanishes but when Bx does.

The analytical study carried out supplies a criterion to characterize local regions containing points of acoustic causality
inherent to the MHD equations. The description allows us to perform a specific numerical treatment for the nonconvex char-
acteristic fields as we will develop in the following.
3. An entropy-fix upwind scheme for nonconvex scalar conservation laws

A numerical scheme based on the local characteristic decomposition of a system of conservation laws considers each of
the characteristic fields as a scalar conservation law. As we have seen in the previous section, the decoupled system of MHD
equations counts with several nonlinear characteristic fields that might be nonconvex. In this section we propose an upwind
numerical scheme for the approximation of the solution of nonconvex scalar conservation laws.

The one-dimensional case of a scalar conservation law can be written as
ut þ f ðuÞx ¼ 0 with uðx;0Þ ¼ u0ðxÞ; ð21Þ
where u0ðxÞ is piecewise smooth, periodic or of compact support. The conservation law (21) is governed by the flux f ðuÞ that
is a twice differentiable nonlinear function. A conservation law is convex if f 00ðuÞ– 0 8u and is nonconvex if f 00ðuÞ vanishes in
some isolated points: points where phase change occurs ([12,13]).

A scheme in conservation form for a scalar conservation law is written as
unþ1
j ¼ un

j �
Dt
Dx

~f jþ1
2
� ~f j�1

2

� 	
; ð22Þ
where un
j � uðxj; tnÞ is a numerical approximation of the weak solution of (21) defined in the computational cell

xj ¼ jh; tn ¼ nDt. The numerical flux ~f n
jþ1

2
is a function of 2k variables ~f jþ1

2
¼ ~f ðuj�kþ1; . . . ;ujþkÞ that is consistent with (21),

i.e. ~f ðu; . . . ;uÞ ¼ f ðuÞ.
An upwind scheme in conservation form for a nonlinear scalar conservation law computes the numerical fluxes according

to the sign of the local wave speed f 0ðuÞ. The main advantage of these schemes lies on the low dissipation of the approxima-
tion of the solution. This behavior allows to capture fine structure of the solution better than other dissipative schemes. On
the contrary, upwind schemes fail to be monotone in the neighborhood of points where new structure is generated [25].
Transonic rarefactions around sonic points (where f 0ðuÞ changes sign) and compound waves around phase points (where
f 00ðuÞ changes sign) are not well resolved by the upwind strategy. In fact, these points of acoustic causality need of numerical
dissipation to be able to develop their intrinsic structures.

In [25], Shu and Osher proposed the so-called ‘‘entropy-fix upwind scheme” as an entropy correction to upwind schemes
for convex fluxes prescribing the necessary viscosity to avoid ‘‘dog-leg” effect in transonic rarefactions. The correction con-
sists in switching to a Lax–Friedrichs scheme around sonic points. We refer to this scheme as sonic-fix upwind (SFU) scheme.
The numerical flux ~f n

jþ1
2

:¼ gSFUðun
j ;u

n
jþ1Þ is defined as
gSFUðun
j ;u

n
jþ1Þ ¼

gLFðun
j ;u

n
jþ1Þ if f 0ðun

j Þ � f 0ðun
jþ1Þ < 0 ðsonic pointsÞ

gUPWðun
j ; u

n
jþ1Þ otherwise

(

being gLF the Lax–Friedrichs flux
gLFðu;vÞ ¼
1
2
ðf ðuÞ þ f ðvÞÞ � a

2
ðv � uÞ; ð23Þ
where the analytical viscosity is defined as a :¼maxw2½u;v �jf 0ðwÞj and the upwind flux defined as ([22,25])
gUPWðu;vÞ ¼
f ðuÞ if f uþv

2


 �
P 0

f ðvÞ if f uþv
2


 �
< 0

(



4238 S. Serna / Journal of Computational Physics 228 (2009) 4232–4247
Next we propose to extend the entropy correction to nonconvex dynamics with a similar procedure to allow correct forma-
tion of compound waves in the neighborhood of phase points.

Our entropy-fix upwind (EFU) scheme for a nonconvex scalar conservation law defines the numerical flux as
−0.

−0.

−0.

0.

0.

0.

0.

1.

Fig. 1.
Friedric
gEFUðun
j ; u

n
jþ1Þ ¼

gLFðun
j ;u

n
jþ1Þ; if

f 0ðun
j Þ � f 0ðun

jþ1Þ < 0 ðsonic pointsÞ;
or

f 00ðun
j Þ � f 00ðun

jþ1Þ < 0 ðphase pointsÞ

8><
>:

gUPWðun
j ; u

n
jþ1Þ; otherwise

8>>>><
>>>>:
As an illustration of the significance of performing an entropy correction on points of acoustic causality as sonic points and
phase points for the approximation of the solution of convex and nonconvex scalar conservation laws we perform the
numerical approximation of two initial-value problems associated to the convex Burgers and nonconvex Buckley–Leverett
fluxes.

We consider the scalar conservation law (21) with f1 and f2, convex and nonconvex fluxes, respectively
f1ðuÞ ¼
u2

2
; f 2ðuÞ ¼

4u2

4u2 þ ð1� uÞ2
ð24Þ
and the corresponding u1 and u2 initial data in [�1,1]
u1ðxÞ ¼
� 1

2 ; x 6 0;
1; otherwise;

(
u2ðxÞ ¼

1; 0 6 x 6 0:5;
0; otherwise:

�

The flux function f1ðuÞ contains a sonic point at u ¼ 0 and is convex since f 00ðuÞ > 0 8u 2 ½�1;1�. Flux function f2ðuÞ is
nonconvex since contains a state u1 � 0:2871 such that f 00ðu1Þ ¼ 0 and f 00ðuÞ – 0 8u 2 ½�1;1�;u – u1. We compute first
order accurate numerical approximations of the solution of both problems using 200 points at time t ¼ 0:4 and a
Courant–Friedrichs–Lewy (CFL) coefficient equal to 0.8.

In the convex case we compare UPW, SFU schemes and the more dissipative standard Lax–Friedrichs scheme versus the
exact solution of the problem. In the nonconvex case we compare both entropy-fix upwind schemes for convex and non-
convex fluxes, SFU and EFU respectively, and the Lax–Friedrichs scheme versus the exact solution of the problem.

Fig. 1 left displays convergence to the correct solution by Lax–Friedrichs scheme. Central picture in the same figure
shows how upwind scheme fails to converge to the entropy solution. Right picture of Fig. 1 displays the result with
the Shu–Osher sonic-fix upwind (SFU) scheme. The viscosity prescription at the sonic point allows convergence to the en-
tropy solution.

In Fig. 2 left we observe convergence to the entropy solution by Lax–Friedrichs method although the approximation is
poor due to the excessive dissipation of the scheme. The convex sonic-fix upwind scheme (Fig. 2, center) does not con-
verge to the entropy solution because selects the upwind choice at phase points. Right picture of Fig. 2 displays the result
with our entropy-fix upwind scheme showing convergence to the exact solution with reduced dissipation. The good res-
olution obtained with our scheme demonstrates the advantage of upwind schemes to approximate the correct entropy
solution when combined with an appropriate prescription of the viscosity at points of acoustic causality.

In the following section we extend the proposed scheme to the MHD system of conservation laws where nonlinear char-
acteristic fields might be nonconvex.
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Exact solution (solid line) versus approximate solutions at time t ¼ 0:4 with 200 grid points and CFL ¼ 0:8 of the Burgers problem for the Lax–
hs scheme (left), upwind scheme (center) and sonic-fix upwind scheme (right).
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Fig. 2. Exact solution (solid line) versus approximate solutions at time t ¼ 0:4 with 200 grid points and CFL ¼ 0:8 of the Buckley–Leverett problem for the
Lax–Friedrichs scheme (left), sonic-fix upwind scheme (center) and nonconvex entropy-fix upwind scheme (right).
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4. An entropy-fix upwind scheme for the equations of ideal magnetohydrodynamics

The diagonalization of the Jacobians of the fluxes decouples the original system of conservation laws into a system of sca-
lar conservation laws local in space and time. In this section we adopt the local characteristic decomposition approach pre-
sented in Section 2 and design a characteristic-based upwind scheme for the ideal MHD equations. We propose an entropy
correction around points of acoustic causality in accordance with the analytical study carried out in Section 2 to characterize
nonconvex points. We prescribe a specific local viscosity in a similar way as proposed in Section 3 for nonconvex scalar con-
servation laws.

A numerical scheme in conservation form for a system of conservation laws in two dimensions can be written as
unþ1
jk ¼ un

jk �
Dt
Dx

~f jþ1
2;k
� ~f j�1

2;k

� 	
� Dt

Dy
~gj;kþ1

2
� ~gj;k�1

2

� 	
; ð25Þ
where ~f and ~g are the numerical fluxes in each direction consistent with the fluxes of the system.
We perform in each direction the local characteristic decomposition of this system decoupling the equations in linearly

independent characteristic fields. We design our numerical scheme applying to each characteristic field a similar proce-
dure as the one proposed in Section 3 for scalar conservation laws. We select the upwind choice for the computation
of numerical fluxes at upwind interfaces and we correct entropy in all characteristic fields at interfaces containing points
of acoustic causality: sonic points and nonconvex points (singular points where the transverse magnetic field changes
sign).

The entropy correction proposed for singular points consists of applying the Lax–Friedrichs flux splitting procedure to
each characteristic field prescribing a viscosity a that in the x-direction reads as
ax ¼ max kf
4ðun

jkÞ
��� ���; kf

4ðun
jþ1;kÞ

��� ���� 	
þmax cx

jk; c
x
jþ1;k

� 	
; ð26Þ
where cx
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

f un
jk

� 	2
þ cx

s ðun
jkÞ

2

r
and cx

jþ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

f ðun
jþ1;kÞ

2 þ cx
sðun

jþ1;kÞ
2

q
.

This ax value is an upper bound of the maximum of the absolute values of the allowed characteristic speeds since

cx
f 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx2

f þ cx2
s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. We choose k4 because the characteristic field p ¼ 4 corresponds to the entropy contact wave

and therefore kf
4ðuÞ is the x-component of the fluid velocity. For the y-direction case the viscosity ay is defined in terms

of cy
jk and cy

j;kþ1 and the y-component of the fluid velocity kg
5ðuÞ. This entropy correction provides a suitable amount of vis-

cosity allowing the correct formation of compound waves.
The entropy correction at sonic points consists in prescribing the viscosity as the maximum of absolute values of the local

wave speeds at both sides of the interfaces ([25]).
Next we propose an specific first order accurate numerical scheme to approximate the solution of the ideal MHD

equations.
Numerical schemes for hyperbolic conservation laws based on characteristic field decomposition are required to satisfy

the Rankine–Hugoniot relations to approximate the numerical fluxes of the scheme ([16,17]). Those numerical schemes that
use one linearization at interfaces need of explicit formulas to compute an average state at interfaces ([22]). There exist exact
formulas for the ideal MHD system only for the case where the adiabatic exponent c is c ¼ 2 ([5]). For other values of c there
are not such formulas to satisfy exactly Rankine–Hugoniot relations and arithmetic averages are used instead to define the
intermediate states ([5,15]). The arbitrary averaging satisfies approximately Rankine–Hugoniot relations although it might
define non-physical intermediate states.
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We are interested in solving MHD problems for different values of c preventing from computing averages at interfaces.
We then will approximate the numerical fluxes at cell interfaces by means of two linearizations at each side of the interface
following the interface splitting strategy used in the Marquina flux formula (MFF) [9] that satisfies approximately Rankine–
Hugoniot relations avoiding any averaging at interfaces.

The specific form of the first order accurate approximation of the system of equations reads as
unþ1
jk ¼ un

jk �
Dt
Dx

~fðun
jk;u

n
jþ1;kÞ � ~fðun

j�1;k;u
n
jkÞ

� 	
� Dt

Dy
~gðun

jk;u
n
j;kþ1Þ � ~gðun

j;k�1;u
n
jkÞ

� 	
ð27Þ
such that ~fðu;uÞ ¼ fðuÞ and ~gðu;uÞ ¼ gðuÞ.
The first order accurate flux splitting formula to compute ~f (similar for ~g) in terms of two linearizations for each flux and

interface as proposed in [9] is
~fðun
jk;u

n
jþ1;kÞ ¼

X8

p¼1

wp
þrf

p un
jk

� 	
þ wp

�rf
pðun

jþ1;kÞ
h i

; ð28Þ
where the lateral numerical characteristic fluxes wp
þ and wp

� at the interfaces are determined as detailed in the following.
We compute the complete system of eigenvectors at un

jk and un
jþ1;k and the associated eigenvalues kf

pðun
jkÞ and kf

pðun
jþ1;kÞ for

p ¼ 1;2; . . . ;8 proposed in Section 2. The local characteristic fluxes and variables are calculated at both sides of the interface
as
/p
j;k ¼ fðun

jkÞ � l
f
pðun

jkÞ; ð29Þ

/p
jþ1;k ¼ fðun

jþ1;kÞ � l
f
pðun

jþ1;kÞ; ð30Þ

wp
j;k ¼ un

j;k � l
f
pðun

jkÞ; ð31Þ

wp
jþ1;k ¼ un

jþ1;k � l
f
pðun

jþ1;kÞ ð32Þ
for p ¼ 1;2; . . . ;8.
Then the numerical characteristic fluxes wp

þ and wp
� are determined from the following procedure and are expressed in

terms of /þ
p

jþ1
2;k
;/�

p

jþ1
2;k
;wþ

p

jþ1
2;k

and w�p

jþ1
2;k

which represent the extended values at the interface of the characteristic fluxes and
variables. First order approximation of these values through extensions by constant are /p

jk;/
p
jþ1;k;w

p
jk and wp

jþ1;k, respectively.

	 If xjþ1
2
; yk

� 	
is a singular interface ( Byðxj; ykÞ � Byðxjþ1; ykÞ 6 0 and a2 < b2

x or a2 > b2
x

� 	
or Bxðxj; ykÞ � Bxðxjþ1; ykÞ 6 0



and a2 > b2
x Þ, i.e., the interface contains a nonconvex point under Theorem 1 conditions) then,
ax ¼max kf
4 un

jk

� 	��� ���; kf
4 un

jþ1;k

� 	��� ���� 	
þmax cx

jk; c
x
jþ1;k

� 	
;

where
cx
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

f ðun
jkÞ

2 þ cx
sðun

jkÞ
2

q
and cx

jþ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

f ðun
jþ1;kÞ

2 þ cx
s ðun

jþ1;kÞ
2

q

and the numerical fluxes are defined as:
wp
þ ¼

1
2

/þ
p

jþ1
2;k
þ awþ

p

jþ1
2;k

� 	
; wp

� ¼
1
2

/�
p

jþ1
2;k
� aw�

p

jþ1
2;k

� 	
ð33Þ
for p ¼ 1;2; . . . ;8.
	 If xjþ1

2
; yk

� 	
is a sonic interface (there is at least one q 2 f1;2; . . . ;8g such that kf

qðun
j;kÞ � k

f
qðun

jþ1;kÞ 6 0) then
ap ¼max kf
p un

jk

� 	��� ���; kf
p un

jþ1;k

� 	��� ���� 	
ð34Þ
and the numerical fluxes are defined as
wp
þ ¼

1
2

/þ
p

jþ1
2;k
þ apwþ

p

jþ1
2;k

� 	
; wp

� ¼
1
2

/�
p

jþ1
2;k
� apw�

p

jþ1
2;k

� 	
ð35Þ
for p ¼ 1;2; . . . ;8.
	 If xjþ1

2
; yk

� 	
is an upwind interface (an interface not containing points of acoustic causality) then

– If kf
p un

jk

� 	
> 0,
wp
þ ¼ /þ

p

jþ1
2;k

; wp
� ¼ 0: ð36Þ
– If kf
p un

jk

� 	
6 0,
wp
þ ¼ 0; wp

� ¼ /�
p

jþ1
2;k

ð37Þ
for p ¼ 1;2; . . . ;8.
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The calculation of ~g at interface xj; ykþ1
2

� 	
is similar taking into account the corresponding condition of Theorem 1 for the

y-direction case, (Remark 1 in Section 2).
Last step to approximate the solution of the two-dimensional MHD system of equations consists of enforcing (9), the

divergence-free constraint on the magnetic field.
The re-projection step involves the global solution of an elliptic equation with a non-smooth source term ([3,26]). This

induces extra dissipation on the magnetic field since the general solution of this equation can be expressed as a global con-
volution operator with a smooth kernel. The extra dissipation added on the magnetic field induces dissipation to the rest of
conserved quantities since these variables are strongly coupled. Therefore, the re-projection step implies a global dissipa-
tion over a set of conserved variables that are (in fact) approximated locally in space through a hyperbolic system of
equations.

It is essential for most numerical schemes to perform the mentioned additional correction on the magnetic field to satisfy
the divergence-free constraint ensuring stability and accuracy of the scheme [8,10,15,26]. We remark that some numerical
schemes proposed recently do not need to enforce this constraint [1,2].

In our calculations the correction of the magnetic field to satisfy the divergence-free constraint is applied at the end of
every time step following the prescription proposed in [3].

We first compute, by a fast Poisson solver, the approximate solution / of
D/þr � B ¼ 0 ð38Þ
being B the magnetic field to be corrected, and we set the corrected magnetic field Bc computed as
Bc ¼ Bþr/: ð39Þ
We use central differences for the computation ofr � B;r/ and D/ ensuring thatr � B ¼ 0 is preserved up to the truncation
error of the method.

The proposed upwind scheme for ideal MHD equations presented in this section corrects entropy in the neighborhood of
points where new wave structure is generated as an alternative to the upwind strategy. The entropy correction is performed
in each characteristic wavefield according to an appropriate viscosity that is consistent with the nonconvex behavior of the
MHD equations and is made locally in space and time over all characteristic fields around sonic and singular points. The pro-
posed numerical scheme is well behaved since the numerical fluxes are computed through a flux formula that is a contin-
uous function of the conserved variables ([13]).

5. High order numerical implementation

In this section we explain the procedure we follow to obtain high order accurate approximations of the solution of the
ideal MHD system of equations.

We consider the first order entropy-fix upwind scheme proposed in the previous section to approximate the numerical
fluxes of the scheme in conservation form (27) and we apply a reconstruction procedure on local characteristic fluxes and
variables following the so-called ‘‘flux formulation” ([25]) to achieve high order accuracy in space. We perform this proce-
dure dimension-by-dimension to obtain a two-dimensional conservative approximation. We then apply a high order total
variation diminishing (TVD) Runge–Kutta time stepping procedure for the integration in time ([25]). The algorithm to
achieve high order accuracy in space is as follows.

Let us consider a reconstruction function R which has a 2lþ 1 points stencil and let ẑ represent the high order spatial
approximation of z. The first order Euler explicit approximation in time and high order accurate spatial approximation of
the conserved variables of our system based in the expression (27) becomes
unþ1
jk ¼ un

jk �
Dt
Dx

~̂fn
jþ1

2;k
� ~̂fn

j�1
2;k

� �
� Dt

Dy
~̂gn

j;kþ1
2
� ~̂gn

j;k�1
2

� 	
; ð40Þ
where the numerical fluxes ~̂f and ~̂g at each interface xjþ1
2

and xj�1
2

in the x- and y-directions respectively are functions of 2lþ 2
conserved variables.

We compute these numerical fluxes using two linearizations at each interface following Marquina’s interface splitting
procedure [9]. The resulting flux splitting for ~̂f at the right interface xjþ1

2;k
is computed from the characteristic numerical

fluxes at both sides of the interface as
~̂fn
jþ1

2;k
¼
X8

p¼1

ŵp
þðuj�l;k; . . . ;ujþl;kÞrf

p un
jk

� 	
þ ~wp

�ðuj�lþ1;k; . . . ;ujþlþ1;kÞrf
pðun

jþ1;kÞ
h i

; ð41Þ
where ŵp
þ and ŵp

� are the high order accurate characteristic numerical fluxes computed through formulas (33), (35), (36) or
(37) in terms of the high order accurate values of the characteristic fluxes and variables /̂þ

p

jþ1
2;k
; /̂�

p

jþ1
2;k
; ŵþ

p

jþ1
2;k

and ŵ�p

jþ1
2;k

at both
sides of the interface. These are calculated from 2lþ 1 first order characteristic fluxes and variables respectively by evaluat-
ing at the interface a reconstruction function R that is determined via primitive function and satisfies the conservation prop-
erty ([25]). The function R must be an elementary function that approximates the corresponding variable or flux up to a
degree of accuracy.
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Thus, /̂þ
p

jþ1
2;k
¼ R/þ xjþ1

2

� 	
such that R/þ satisfies
/þ
p

j;k ¼
1
h

Z x
jþ1

2

x
j�1

2

R/þ /þ
p

j�l;k; . . . ;/þ
p

jþl;k; s
� 	

ds;
where /þ
p

i;k ¼ f un
i;k

� 	
� lf

p un
jk

� 	
; i ¼ j� l; . . . ; jþ l.

Similarly,

	 ŵþ
p

jþ1
2;k
¼ Rwþ xjþ1

2

� 	
in terms of wþ

p

i;k ¼ un
i;k � l

f
p un

jk

� 	
; i ¼ j� l; . . . ; jþ l, such that
wþ
p

j;k ¼
1
h

Z x
jþ1

2

x
j�1

2

Rwþ wþ
p

j�l;k; . . . ;wþ
p

jþl;k; s
� 	

ds:
	 /̂�
p

jþ1
2;k
¼ R/� xjþ1

2

� 	
in terms of /�

p

i;k ¼ f un
i;k

� 	
� lf

p un
jþ1;k

� 	
; i ¼ j� lþ 1; . . . ; jþ lþ 1, such that
/�
p

jþ1;k ¼
1
h

Z x
jþ3

2

x
jþ1

2

R/� /�
p

j�lþ1;k; . . . ;/�
p

jþlþ1;k; s
� 	

ds:
	 ŵ�p

jþ1
2;k
¼ Rw� xjþ1

2

� 	
in terms of w�p

i;k ¼ un
i;k � l

f
p un

jþ1;k

� 	
; i ¼ j� lþ 1; . . . ; jþ lþ 1, such that
w�
p

jþ1;k ¼
1
h

Z x
jþ3

2

x
jþ1

2

Rw� w�
p

j�lþ1;k; . . . ;w�
p

jþlþ1;k; s
� 	

ds:
The flux splitting for ~̂f at the left interface xj�1
2;k

is computed similarly to (41) shifting the index j one unit to the left,
~̂fn

j�1
2;k
¼ ~̂fn

j�1
2;k
ðun

j�l�1;k; . . . ;un
jþl;kÞ. The case for the fluxes in the y-direction is equivalent running the k index instead of j.

Consistent high order approximations in time can be achieved through Runge–Kutta type convex combinations of high
order spatial approximations computed from expression (41), ([25]).

In particular, we have implemented this numerical scheme to achieve third order accuracy in space and time. As the
reconstruction procedure in space we have used the third order accurate Power Piecewise Hyperbolic Method ([24]) which
has a three point stencil, i.e. l ¼ 1. For the integration in time we have utilized the third order accurate TVD Runge–Kutta
time stepping procedure proposed in [25].

6. Numerical results

In this section we present a set of numerical experiments for the system of MHD equations in one and two spatial dimen-
sions using the third order accurate entropy-fix upwind scheme proposed in the previous section.

The proposed numerical method is stable under a CFL restriction determined by
Dt ¼ C
Dx

maxðjuj þ cf Þ
ð42Þ
for one-dimensional experiments and
Dt ¼ C

max jujþcx
f

� 	
Dx þ

max jvjþcy
f

� 	
Dy

ð43Þ
for two-dimensional ones where C is 0.8 in our calculations and the maximums are taken over all computational cells.

6.1. Brio–Wu shock tube problem

We consider the one-dimensional Riemann problem consisting of a shock tube with two initial constant states, uL and uR
ðq;u;v ;w;Bx;By;Bz; PÞ ¼
ð1; 0;0;0;0:75;1;0;1Þ; x 6 0;
ð0:125;0; 0;0;0:75;�1;0; 0:1Þ; x > 0;

�

with c ¼ 2. We solve the one-dimensional 8� 8 MHD system for x 2 ½�1;1� with N ¼ 800 equally spaced grid points. We
compute until time t ¼ 0:2. This example was proposed by Brio and Wu in [5] to show the formation of a compound wave
containing an intermediate shock which is attached by a slow rarefaction wave. The solution of this problem consists of a
left-moving fast rarefaction wave, a slow compound wave, a contact discontinuity, a right-moving slow shock and a
right-moving fast rarefaction wave. The change of sign of By is responsible for the formation of the compound wave.

Fig. 3 shows the density profile, the x- and y-components of the velocity, the y-component of the magnetic field and the
pressure profiles at time 0.2 computed with our third order accurate entropy-fix upwind scheme.
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Fig. 3. Brio–Wu shock tube problem at time t ¼ 0:2. Exact solution (solid line) versus computed approximation using the third order accurate entropy-fix
upwind scheme with 800 grid points and CFL ¼ 0:8: density profile (top left), x-component of the velocity (top right), y-component of the velocity (middle
left), y-component of the magnetic field (middle right) and pressure (bottom).
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Our scheme captures the complex features of the discontinuous MHD solution with high accuracy and low dissipation.
The numerical results show that our scheme needs about four grid points to resolve shock layers and about six grid points
to capture contact discontinuities. These numerical results are comparable to the calculations reported by Brio and Wu in [5]
with a second order TVD scheme and the ones by Jiang and Wu in [15] with a fifth order accurate WENO Lax–Friedrichs
scheme. Discontinuities by our scheme are resolved using the same number of grid points as the fifth order WENO scheme.
Our third order approximation presents small oscillations near the trailing-edge of the right-moving fast rarefaction wave in
the x-component of the velocity profile. These oscillations are of the order of the truncation error and less pronounced than
the ones by the WENO scheme.

6.2. High Mach shock tube problem

The following shock tube problem is used to test the robustness of the numerical scheme for high Mach number flows.
This Riemann problem consists of two constant states defined as
ðq; u;v ;w;Bx;By; Bz; PÞ ¼
ð1;0;0;0; 0;1;0;1000Þ; x 6 0;
ð0:125;0;0;0;0;�1;0;0:1Þ; x > 0;

�
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Fig. 4. High Mach shock tube problem at time t ¼ 0:012. Exact solution (solid line) versus approximate solution computed by the third order accurate
entropy-fix upwind scheme with 200 grid points and CFL ¼ 0:8: density profile (top left), x-component of the velocity (top right), y-component of the
magnetic field (bottom left) and the pressure (bottom right).
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x 2 ½�1;1� and c ¼ 2. The resulting Mach number of the right-moving shock is 15.5. This problem becomes a standard gas
dynamics Riemann problem if one replaces the hydrodynamic pressure by the sum of the plasma and the magnetic pres-
sures. The solution of this problem consists of a left-moving fast rarefaction wave, a contact discontinuity (tangential
one) and a right-moving fast shock. The total pressure and the fluid velocity are continuous through the contact wave
although density, magnetic field and pressure may develop jumps. We perform the computation with 200 equally spaced
grid points. The numerical approximation using our third order accurate entropy-fix upwind schemes is shown in Fig. 4
at t ¼ 0:012 versus the exact solution (solid line). Note that the shocks appear very sharp and are resolved with two grid
points without post-shock oscillations and the contact wave is approximated with six–seven grid points.

6.3. Orszag–Tang MHD turbulence problem

We consider the evolution of a compressible Orszag–Tang vortex system [7,19,21] using the two-dimensional MHD sys-
tem of equations. The evolution of this complex flow contains many significant features of MHD turbulence involving inter-
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Fig. 5. Evolution of the compressible Orszag–Tang MHD turbulence problem at time t ¼ 0:5. Numerical approximation of the density (left) and the pressure
(right) computed by the third order accurate entropy-fix upwind scheme with 192� 192 grid points.
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actions between several shock waves traveling at different speeds and the formation of intermediate shocks. This vortex sys-
tem was proposed as a test problem by Zachary et al. in [29] for the first time and has become a standard benchmark for
MHD numerical schemes.

The initial data are given for ðx; yÞ 2 ½0;2p� � ½0;2p� by
Fig. 6.
(right)

Fig. 7.
(right)
qðx; y;0Þ ¼ c2; uðx; y; 0Þ ¼ � sinðyÞ; vðx; y;0Þ ¼ sinðxÞ;
pðx; y;0Þ ¼ c; Bxðx; y;0Þ ¼ � sinðyÞ; Byðx; y;0Þ ¼ sinð2xÞ
with c ¼ 5=3. Periodic boundary conditions are imposed in both x- and y-directions. We solve the MHD system with a uni-
form grid of 192� 192 points using our third order accurate entropy-fix upwind scheme.

Figs. 5–7 show the numerical approximation of the Orszag–Tang vortex system at t ¼ 0:5;2 and t ¼ 3, respectively.
The results are in excellent agreement with the ones in [2,15] and show the ability of our third order accurate entropy-fix

upwind scheme to resolve shocks sharply and to capture fine structure of the vortex system.

6.4. Two dimension MHD Riemann problem

This Riemman problem consists of an initial data defined as constant states on each of the four quadrants of the domain.
This problem was numerically studied in [23] for hydrodynamics and extended to MHD in [8] where an initial uniform mag-
netic field is introduced. We consider the four contacts Riemann problem defined in x 2 ½�0:4;0:4�; y 2 ½�0:4;0:4� by
ðq; u;v ;w;B; PÞ ¼

ð1;0:75;�0:5;0;B;1Þ; x P 0; y P 0
ð2;0:75;0:5;0;B;1Þ; x < 0; y P 0
ð1;�0:75;0:5;0;B;1Þ; x < 0; y < 0
ð3;�0:75;�0:5; 0;B;1Þ; x P 0; y < 0

8>>><
>>>:
where B ¼ 1ffiffiffiffi
8p
p ð2; 0;1Þ and c ¼ 5=3. We evolve until time t ¼ 0:8 with 512� 512 grid points and impose outflow boundary

conditions. Fig. 8 displays the density and magnetic field profiles. The numerical results are in good agreement with those in
[8].
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Evolution of the compressible Orszag–Tang MHD turbulence problem at time t ¼ 2. Numerical approximation of the density (left) and the pressure
computed by the third order accurate entropy-fix upwind scheme with 192� 192 grid points.
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Evolution of the compressible Orszag–Tang MHD turbulence problem at time t ¼ 3. Numerical approximation of the density (left) and the pressure
computed by the third order accurate entropy-fix upwind scheme with 192� 192 grid points.
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6.5. Interaction between a strong shock and a high-density cloud

This two-dimensional MHD problem was proposed in [8] and describes the interaction between a Mach 10 shock wave
and a high-density cloud. The initial conditions of the problem for the two states separated by a discontinuity at x ¼ 0:6 are
given for x 2 ½0;1�; y 2 ½0;1� by
ðq;u;v ;w;Bx;By;Bz; PÞ ¼
ð3:86859;0; 0;0;0;�2:1826182;2:1826182;167:34Þ; x < 0:6;
ð1;�11:2536; 0;0; 0;0:56418958;0:56418958;1Þ; x > 0:6:

�

The circular cloud of radius 0.15 is centered at ðx; yÞ ¼ ð0:8;0:5Þ and has a density q ¼ 10. In Fig. 9 we display the density and
magnetic field profiles computed with 512� 512 grid points, c ¼ 5=3 at time t ¼ 0:06 imposing outflow boundary condi-
tions. The numerical results show the ability of our entropy-fix upwind scheme to resolve highly supersonic MHD flows.

The numerical experiments tested in this section demonstrate good behavior of our scheme. The performance of the
numerical scheme is stable and robust for different values of the adiabatic exponent c. The results show that the choice
of a low dissipative scheme with an appropriate entropy correction allows to resolve discontinuities sharply and to capture
fine scales avoiding the use of a very high order accurate version of the scheme.

7. Conclusions

We have performed an analysis of the wave structure of the ideal MHD equations. We have presented a complete system
of eigenvectors of the Jacobians of the fluxes that allows to derive an analytical expression of the nonlinearity term associ-
ated to each characteristic field. We have deduced a criterion for the detection of local regions containing points for which a
nonlinear characteristic field becomes nonconvex. We have designed a characteristic-based upwind scheme for the ideal
MHD equations that resolves the wave dynamics by local characteristic wavefields using the proposed complete system
of eigenvectors. The new scheme is able to detect local regions containing nonconvexity points and to handle an entropy
correction by prescribing a local viscosity ensuring convergence to the entropy solution. A third order accurate version of
the scheme performs satisfactorily in resolving one and two-dimensional MHD problems.
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